1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Formula for Sum of n Terms of an AP
In an A.P., p...
Question
In an A.P., prove that
d
=
S
n
−
2
S
n
−
1
+
S
n
−
2
.
Open in App
Solution
For an Arithmetic Progression,
S
n
=
n
2
.
[
2
a
+
(
n
−
1
)
d
]
S
n
−
1
=
n
−
1
2
.
[
2
a
+
(
n
−
2
)
d
]
S
n
−
2
=
n
−
2
2
[
2
a
+
(
n
−
3
)
d
]
Now, let's take the
R
H
S
:
R
H
S
=
S
n
−
2
S
n
−
1
+
S
n
−
2
=
a
n
+
n
(
n
−
1
)
2
.
d
−
2
a
(
n
−
1
)
−
(
n
−
1
)
(
n
−
2
)
d
+
a
(
n
−
2
)
+
(
n
−
2
)
(
n
−
3
)
2
.
d
=
a
[
n
−
2
(
n
−
1
)
+
n
−
2
]
+
d
[
n
(
n
−
1
)
2
−
(
n
−
1
)
(
n
−
2
)
+
(
n
−
2
)
(
n
−
3
)
2
]
=
0
+
d
2
[
(
n
2
−
n
)
−
2
(
n
2
−
3
n
+
2
)
+
(
n
2
−
5
n
+
6
)
]
=
d
2
(
−
4
+
6
)
=
d
2
×
2
=
d
=
L
H
S
L
H
S
=
R
H
S
Thus it is proved.
Suggest Corrections
0
Similar questions
Q.
In any A.P.,
S
n
−
2
S
n
−
1
+
S
n
−
2
=
.
.
.
.
.
(
n
>
2
)
Q.
The common difference of an A.P., the sum of whose n terms is S
n
, is
(a) S
n
− 2S
n−1
+ S
n−2
(b) S
n
− 2S
n−1
− S
n−2
(c) S
n
− S
n−2
(d) S
n
− S
n−1