We have,
Sn=5n2+11n
Onmultiplyinganddivideby2andweget,
⇒Sn=22(5n2+11n)
⇒Sn=n2(10n+22)
⇒Sn=n2(22+10n)
⇒Sn=n2(22+10n−10+10)
⇒Sn=n2(32+10(n−1))
⇒Sn=n2(32+(n−1)10)
On comparing that,
Sn=n2(2a+(n−1)d)
Now,
a=16,d=10
So,
Tn=a+(n−1)d
Tn=16+(n−1)10
Tn=16+10n−10
Tn=6+10n
Hence, this is the answer.