In an A.P. the first term is 2 and the sum of the first five terms is one fourth of the next five terms. Show that 20th terms is - 112.
Given:
a=2, S5=14(S10−S5)
We have:
S5=52[2×2+(5−1)d]⇒S5=5[2+2d]……(i)
Also, S10=102[2×2+(10−1)d]⇒S10=5[4+9d]……(ii)∵S5=14(S10−S5)
From (i) and (ii), we have:
⇒5[2+2d]=14[5(4+9d)−5(2+2d)]⇒8+8d=4+9d−2−2d⇒d=−6∴a20=a+(20−1)d⇒a20=a+19d⇒a20=2+19(−6)⇒a20=−112