Formula: 1 Mark
Application: 2 Marks
Answer: 1 Mark
A.P is a, (a+d), (a+2d) ... (a+98d)
Sum of odd terms = 2550
a+(a+2d)+(a+4d)+……+(a+98d)50 terms=2550
502[2a+(50−1)2d]=2550
(∵Sn=n2×(2a+(n−1)d))
502[2a+98d]=2550
50[a+49d]=2550
a+49d=51
This is the 50th term of A.P. Hence
S99=992(2a+98d)
S99=99(a+49d)
S99=51×99=5049
(∵a+49d=51)