In an AP
(i) Given a=5,d=3,an=50, find n and Sn.
(ii) Given a=7,a13=35, find d and S13.
(iii) Given a12=37,d=3, find a and S12.
(iv) Given a3=15,S10=125, find d and a10.
(v) Given d=5,S9=75, find a and a9.
(vi) Given a=2,d=8,Sn=90, find n and an.
(vii) Given a=8,an=62,Sn=210, find n and d.
(viii) Given an=4,d=2,Sn=−14, find n and a.
(ix) Given a=3,n=8,S8=192, find d.
(x) Given l=28,Sn=144 and there are total 9 terms. Find a.
General Formula to be used:
1) an=a+(n−1)d 2) Sn=n2[2a+(n−1)d] 3) Sn=n2[a+l]
Now,
(i) a=5,d=3,an=50
⇒an=a+(n−1)d=50 [From formula (1)]
⇒an=5+(n−1)(3)=50
⇒5+3n−3=50
⇒n=50−23=16
∴S16=162[2(5)+(16−1)(3)] [From formula (2)]
⇒S16=8[10+45]=440
(ii) a=7,a13=35
⇒a13=7+(13−1)d=35 [From formula (1)]
⇒7+12d=35
⇒d=35−712=73
∴S13=132[2(7)+(13−1)73] [From formula (2)]
=132×2[7+6×73]
⇒S13=13[7+14]=273
(iii) a12=37,d=3
⇒a12=a+(12−1)3=37 where n=12 [From formula (1)]
⇒a+33=37
⇒a=4
∴S12=122[2(4)+(12−1)3] [From formula (2)]
⇒S12=6[8+33]=246
(iv) a3=15,S10=125
⇒a3=a+(3−1)d=15 [From formula (1)]
⇒a+2d=15
⇒a=15−2d...(a)
Also,
⇒S10=102[2a+(10−1)d]=125 [From formula (2)]
⇒5[2(15−2d)+9d]=125 [From (a)]
⇒30−4d+9d=1255
⇒5d=25−30
⇒d=−1
∴a=15−2(−1)=17
Hence,
a10=17+(10−1)(−1)=8
(v) d=5,S9=75
⇒S9=92[2a+(9−1)5]=75 [From formula (2)]
⇒92×2[a+20]=75
⇒a+20=759
⇒a=253−20=−353
∴a9=−353+(9−1)5=−353+40 [From formula (1)]
⇒a9=853
(vi) a=2,d=8,Sn=90
⇒Sn=n2[2(2)+(n−1)(8)]=90 [From formula (2)]
⇒n[2+(n−1)(4)]=90
⇒2n+4n2−4n=90
⇒2n2−n−45=0
⇒2n2−10n+9n−45=0
⇒2n(n−5)+9(n−5)=0
⇒(2n+9)(n−5)=0
⇒n=5 as n cannot be a fraction.
Hence, a5=2+(5−1)8=34 [From formula (1)]
(vii) a=8,an=62,Sn=210
⇒an=8+(n−1)d=62 [From formula (1)]
⇒(n−1)d=54 ...(b)
Now,
Sn=n2[2a+(n−1)d]=210 [From formula (2)]
⇒n2[2(8)+54]=210 [From (b)]
⇒n[8+27]=210
⇒n=21035=6
∴(6−1)d=54
⇒d=545 or 1045
(viii) an=4,d=2,Sn=−14
⇒an=a+(n−1)2=4 [From formula (1)]
⇒a+2n=6
⇒a=6−2n...(c)
Also, Sn=n2[2a+(n−1)2]=−14 [From formula (2)]
⇒n2[2(6−2n)+(n−1)2]=−14 [From (c)]
⇒n[(6−2n)+(n−1)]=−14
⇒n[5−n]=−14
Comparing with 7[5−7]=7×(−2)=−14, we get,
⇒n=7
∴a=6−2(7)=−8
(ix) a=3,n=8,S8=192
⇒S8=82[2(3)+(8−1)d]=192 [From formula (2)]
⇒4[6+6d]=192
⇒1+d=19224
⇒d=8−1=7
(x) l=28,Sn=144 where n=9
⇒Sn=n2[a+l]=144 [From formula (3)]
⇒S9=92[a+28]=144
⇒a+28=144×29
⇒a+28=32
⇒a=4