wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In an AP

(i) Given a=5,d=3,an=50, find n and Sn.

(ii) Given a=7,a13=35, find d and S13.

(iii) Given a12=37,d=3, find a and S12.

(iv) Given a3=15,S10=125, find d and a10.

(v) Given d=5,S9=75, find a and a9.

(vi) Given a=2,d=8,Sn=90, find n and an.

(vii) Given a=8,an=62,Sn=210, find n and d.

(viii) Given an=4,d=2,Sn=14, find n and a.

(ix) Given a=3,n=8,S8=192, find d.

(x) Given l=28,Sn=144 and there are total 9 terms. Find a.

Open in App
Solution

General Formula to be used:

1) an=a+(n1)d 2) Sn=n2[2a+(n1)d] 3) Sn=n2[a+l]

Now,

(i) a=5,d=3,an=50

an=a+(n1)d=50 [From formula (1)]

an=5+(n1)(3)=50

5+3n3=50

n=5023=16

S16=162[2(5)+(161)(3)] [From formula (2)]

S16=8[10+45]=440

(ii) a=7,a13=35

a13=7+(131)d=35 [From formula (1)]

7+12d=35

d=35712=73

S13=132[2(7)+(131)73] [From formula (2)]

=132×2[7+6×73]

S13=13[7+14]=273

(iii) a12=37,d=3

a12=a+(121)3=37 where n=12 [From formula (1)]

a+33=37

a=4

S12=122[2(4)+(121)3] [From formula (2)]

S12=6[8+33]=246

(iv) a3=15,S10=125

a3=a+(31)d=15 [From formula (1)]

a+2d=15

a=152d...(a)

Also,

S10=102[2a+(101)d]=125 [From formula (2)]

5[2(152d)+9d]=125 [From (a)]

304d+9d=1255

5d=2530

d=1

a=152(1)=17

Hence,

a10=17+(101)(1)=8

(v) d=5,S9=75

S9=92[2a+(91)5]=75 [From formula (2)]

92×2[a+20]=75

a+20=759

a=25320=353

a9=353+(91)5=353+40 [From formula (1)]

a9=853

(vi) a=2,d=8,Sn=90

Sn=n2[2(2)+(n1)(8)]=90 [From formula (2)]

n[2+(n1)(4)]=90

2n+4n24n=90

2n2n45=0

2n210n+9n45=0

2n(n5)+9(n5)=0

(2n+9)(n5)=0

n=5 as n cannot be a fraction.

Hence, a5=2+(51)8=34 [From formula (1)]

(vii) a=8,an=62,Sn=210

an=8+(n1)d=62 [From formula (1)]

(n1)d=54 ...(b)

Now,

Sn=n2[2a+(n1)d]=210 [From formula (2)]

n2[2(8)+54]=210 [From (b)]

n[8+27]=210

n=21035=6

(61)d=54

d=545 or 1045

(viii) an=4,d=2,Sn=14

an=a+(n1)2=4 [From formula (1)]

a+2n=6

a=62n...(c)

Also, Sn=n2[2a+(n1)2]=14 [From formula (2)]

n2[2(62n)+(n1)2]=14 [From (c)]

n[(62n)+(n1)]=14

n[5n]=14

Comparing with 7[57]=7×(2)=14, we get,

n=7

a=62(7)=8

(ix) a=3,n=8,S8=192

S8=82[2(3)+(81)d]=192 [From formula (2)]

4[6+6d]=192

1+d=19224

d=81=7

(x) l=28,Sn=144 where n=9

Sn=n2[a+l]=144 [From formula (3)]

S9=92[a+28]=144

a+28=144×29

a+28=32

a=4


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to AP
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon