First term=a
Let the common difference =d
Sum of first ten terms=0
Sum of first n term of an AP = n2(2a+(n−1)d)
By given S10=0
102(2a+(10−1)d)=0
102(2a+9d)=0
2a+9d=0----- (Equation 1)
Sum of next ten terms=−200
Sum of first ten terms+Sum of next ten terms=0−200
Sum of first ten terms+Sum of next ten terms=−200
So,
Sum of first twenty terms S20=−200
202(2a+(20−1)d)=−200
202(2a+19d)=−200
2a+19d=−20 ------ (Equation 2)
From equation 1,
2a=−9d
Put the value of 2a in equation 2,
−9d+19d=−20
10d=−20
d=−2
Put the value of "d" in equation 1,
2a−18=0
2a=18
a=9