In an Arithmetic Progression a=2
a+(a+d)+(a+2d)+(a+3d)+(a+4d)=14[(a+5d)+(a+6d)+(a+7d)+(a+8d)+(a+9d)]
∴ 5a+10d=14(5a+35d)
Substitute a=2, we get
⇒5×2+10d=14(5×2+35d)
⇒10+10d=14(10+35d)
⇒40+40d=10+35d
⇒ 40d−35d=10−40
⇒5d=−30
⇒ d=−305=−6
⇒ d=−6
20th term in A.P. =a+19d
=2+19(−6)
=2+(−114)
=−112
∴ T20=−112