wiz-icon
MyQuestionIcon
MyQuestionIcon
4
You visited us 4 times! Enjoying our articles? Unlock Full Access!
Question

In an equilateral ΔABC, D is a point on side BC such that BD=13BC. Prove that 9(AD)2=7(AB)2

Open in App
Solution

In ABC and ACE

AB=AC ( Given)

AE=AE ( common)

AEB=AEC=90

ABCACE ( For RHS criterion)

BE=EC (By C.P.C.T)

BE=EC=BC2

In a right angled triangle, ADE

AD2=AE2+DE2 ---------(1)

In a right angled triangle ABE

AB2=AE2+BE2 ---------(2)

From eqn. (1) and (2) we obtain

AD2AB2=DE2BE2

AD2AB2=(BEBD)2BE2

AD2AB2=(BC2BC3)2(BC2)2

AD2AB2=(3BC2BC6)2(BC2)2

AD2AB2=BC236BC24 ( In a equilateral triangle ABC, AB=BC=CA)

AD2=AB2+AB236AB24

AD2=(36AB2+AB29AB2)36

AD2=28AB236

AD2=7AB29

9AD2=7AB2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Triangle Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon