In an equilateral triangle ABC , if AD is perpendicular to BC , then
Since, △ABC is equilateral, therefore, AB=BC=CA
Since, AD is perpendicular to BC, therefore, BD=12AB, DC=12AB
In △ABD
AB2=AD2+BD2 --------(1)
In △ACD
AC2=AD2+DC2 ---------(2)
Adding (1) and (2), we get
AB2+AC2=2AD2+14AB2+14AB2
⇒2AB2=2AD2+12AB2 [since AC=AB]
⇒(2−12)AB2=2AD2
⇒32AB2=2AD2
⇒3AB2=4AD2