In an equilateral triangle ABC , match the following Trigonometric ratios to the values
Trigonometric ratiosValues(i) tan 60∘(p) 1√3(ii) cot 30∘(q)2√3(iii) cosec 30∘(r) 2(iv) sec 30∘(s) √3
Draw a perpendicular from A on BC at D as shown in above figure.
Let each side of the equilateral triangle be a.
Using Pythagoras theorem in △ABD, we get
Length of perpendicular AD =√3a2
tan 60∘=tan B=ADBD=√3
cot 30∘=cot(A2)=ADBD=√3
cosec 30∘=cosec(A2)=ABBD=2
sec 30∘=sec(A2)=ABAD=2√3