The correct option is D 3a2
In △ABC,
∠A=∠B=∠C=60∘
(since △ABC is equilateral)
Since altitude of an equilateral triangle bisects the angle of vertex.
∴∠BAD=30∘
Since altitude of an equilateral triangle bisects the side.
Therefore, BD = DC = a2.
From Pythagoras theorem,
AD2+BD2=AB2
⇒AD=√a2−(a2)2
⇒AD=√3a2
Now, AD cotθ=AD cot 30∘=AD×√3
⇒AD cot θ=√3a2×√3
⇒AD cot θ=3a2