The correct option is D 3a2
In △ABC, ∠A=∠B=∠C=60∘ since it is equilateral.
Consider △ABC,
∠ADB = 90∘
∠ABC = 60∘
⟹∠BAD=180∘−60∘−90∘=30∘
Similarly, ∠CAD=30∘
Now △ABD≅△ACD according to SAS congruency.
Therefore, BD = DC = a2
From Pythagoras theorem,
AD2+BD2=AB2
⟹AD=√a2−(a2)2
⟹AD=√3a2
ADcotθ=ADcot 30∘=AD×ADBD=√3a2×√3a2a2
⟹ADcot θ=3a2