wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In an equilateral triangle ABC, the side BC is trisected at D i.e.,BD=13BC. Prove that 9AD2=7AB2.

Open in App
Solution

Given:ABCisanequilateraltriangle,whosesideBCistrisectedatD.ToProve:9AD2=7AB2Proof:ABCbeanequilateraltriangleandDbethepointonBCsuchthatBD=13BC(Given)DrawAEBC,JoinAD.BE=EC(Altitudedrawnfromanyvertexofanequilateraltrianglebisectstheoppositeside)So,BE=EC=BC2InABCAB2=AE2+EB2...(1)AD2=AE2+ED2...(2)From(1)and(2)AB2=AD2ED2+EB2AB2=AD2BC236+BC24(BD+DE=BC2BC3+DE=BC2DE=BC6)AB2+BC236BC24=AD2(EB=BC2)AB2+AB236AB24=AD2(AB=BC)36AB2+AB29AB236=AD228AB236=AD27AB2=9AD2HenceProved
329403_327557_ans.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Criteria for Similarity of Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon