1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard VII
Mathematics
Properties of Isosceles and Equilateral Triangles
In an equilat...
Question
In an equilateral triangle of side
3
√
3
, find the length of the altitude.
Open in App
Solution
REF.Image
Given
side of an equilateral triangle
A
B
C
=
3
√
3
c
m
A
B
=
B
C
−
A
C
=
3
√
3
c
m
Let AD=h (altitude)
B
D
=
1
2
B
(Altitude bisect the base)
B
D
=
1
2
.3
√
3
=
3
√
3
/
2
cm
A
B
2
=
A
D
2
+
B
D
2
(
3
√
3
)
2
=
(
h
)
2
+
(
3
√
3
/
2
)
2
⇒
27
=
h
2
+
27
/
4
⇒
h
2
=
27
−
27
/
4
⇒
h
2
=
(
4.27
−
27
)
/
4
⇒
h
2
=
108
−
27
/
4
⇒
h
2
=
81
/
7
⇒
h
=
√
81
/
4
⇒
h
=
9
/
2
⇒
h
=
4.5
c
m
Hence, the length of the altitude h is 4.5 cm
Suggest Corrections
0
Similar questions
Q.
In an equilateral triangle of side
3
√
3
c
m
, find the length of its altitude.
Q.
In an equilateral triangle of sides
3
√
3
cm.Find the length of its altitude.
Q.
In an equilateral triangle of side
3
√
3
c
m
,
find the length of the altitude.
Q.
Find the length of the altitude of an equilateral triangle of side 2a cm.