Given,
ImaxImin=4 [Let us say(α)]
And we know that,
ImaxImin=(√I1+√I2)2(√I1−√I2)2
Since we know that,
I∝A2⇒I=k2A2 (k is constant)
∴√I=kA
So, ImaxImin=(kA1+kA2)2(kA1−kA2)2=(A1+A2)2(A1−A2)2
⇒√ImaxImin=√α=A1+A2A1−A2
⇒√αA1−√αA2=A1+A2
⇒A1(√α−1)=A2(√α+1)
∴A1A2=√α+1√α−1
Taking α=4
we get, A1A2=3