Given: AB=AC , BD perpendicular AC
To Prove: BD^2 -DC^2 = 2DC* AD
Proof: BC^2 =CD^2 + BD^2 [PYTHA. THEO.]
=> BD^2 =BC^2-CD^2
AB^2= AD^2+ BD^2 [PYTHA. THEO.]
=> BD^2 =AB^2-AD^2
=[ AB+AD ] * [ AB-AD ] {A^2-B^2= [A+B] [A-B] }
=[ AC+AD ] [ AC-AD] { Since AB=AC}
=[ AC+AD ] * DC
=AC*DC + AD*DC
=[AD+DC]*DC + AD*DC
=AD*DC+DC^2+AD*DC
BD^2 =2AD*DC+DC^2
BD^2 -DC^2 = 2DC* AD