wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In an isosceles triangle ABC,AB=AC and D is a point on BC produced. AM is perpendicular on BC.Prove that AD2=AC2+BD.CD

Open in App
Solution

In AMD,
AD2=AM2+MD2 --(1)
In AMC,
AC2=AM2+MC2 --(2)
BD=BC+CD=2MC+CD
MD=MC+CD
MD2=MC2+CD2+2MC.CD --(3)
From (1), AM2=AD2MD2

Adding eq.(1) and eq.(2), we get
AD2+AC2=2AM2+MC2+MD2AD2+AC2=2AM2+MC2+MC2+CD2+2MC.CD
=2AM2+2MC2+CD2+2MC.CD

Substituting for AM2=AD2MD2 in the above step,

AD2+AC2=2MC2+CD2+2MC.CD+2(AD2MD2)
=2MC2+CD2+2MC.CD+2(AD2MC2CD22MC.CD)
=2AD2+2MC2+CD2+2MC.CD2MC22CD24MC.CD
AD2+AC2=2AD2CD22MC.CD

BD.DC=(2MC+CD).DCBD.DC=2MC.CD+CD2

Substituting in AD2+AC2=2AD2CD22MC.CD, we get

AD2+AC2=2AD2CD22MC.CD
AD2+AC2=2AD2BD.DC
AC2=AD2BD.DC
AD2=AC2+BD.DC
Hence proved.

470886_183776_ans_36b95253a89e4ccbbb0d7e0ffccf75a5.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Any Point Equidistant from the End Points of a Segment Lies on the Perpendicular Bisector
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon