Sum of Trigonometric Ratios in Terms of Their Product
In an isoscel...
Question
In an isosceles triangle ABC,AB=AC. If vertical angle A is 200, then a3+b3 is equal to
A
3a2b
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3b2c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3c2a
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
abc
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D3c2a ∵∠A=200 ∴∠B=∠C=800 ⇒△ABC is isosceles. ⇒AB=AC ⇒c=b Using sine rule, ∴asin20=bsin80=csin80 Rightarrowasin20=bsin(90−10)=csin80 ⇒asin20=bcos10=ccos10 ⇒a=bsin20cos10=b.2sin10cos10cos10=2bsin100 ∴a3+b3=(2bsin10)3+b3 =8b3sin310+b3 =b3(8sin310+1) =b3(2(4sin310+1)) Using the trigonometric formula sin3A=3sinA−4sin3A or 4sin3A=3sinA−sin3Aabove we get =b3(2(3sin10−sin30)+1) =b3(6sin10−2×12+1) =b3(6sin10) =3b2(2bsin10) We know that a=2bsin10 ∴a3+b3=3b2(2bsin10)(from above) =3b2a=3c2a (as b=c)