wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In an isosceles triangle ABC, AB=BC and D is a point on BC produced. Prove that:
AD2=AC2+BD.CD

Open in App
Solution

ACB is isos. Δ,
AOBCαBO=CO :
T.P.:AD2=AC2+BD×CD
Proof : AD2=AO2+OD2AB2=AO2+BO2}Pythogearus....(i)theorem....(ii)
Subtract (ii) from (i)
AD2AB2=OD2BO2
AD2AB2=(OD+BO)(ODBO)[a2b2=(a+b)(ab)]
AD2AB2=(BD)(ODOC)[BO=CO]
AD2AB2=(BD)(CD)[ODOC=CD]
AD2=AB2+BD×CD
AD2=AC2+BD×CD[AB=AC&AB2=AC2]
Hence , proved

1420304_1079429_ans_f17592c1edeb4fb3b12497be7f97047a.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Our Atmosphere and its Composition
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon