In an isosceles triangle, if the vertex angle is twice the sum of the base angles, calculate the angles of the triangle.
Given : In ΔABC, AB=AC
∠A=2(∠B+∠C)
To calculate : Base angles,
Let ∠B=∠C=x
Then ∠A=2(∠B+∠C)
=2(x+x)=2×2x=4x
∵ Sum of angles of a triangle=180∘
∴ 4x+x+x=180∘⇒6x=180∘
⇒ x=180∘6=30∘
∴ ∠B=∠C=30 and ∠A=4×30∘=120∘