In an isosceles triangle, if the vertex angle is twice the sum of the base angles, then the measure of vertex angle of the triangle is
120∘
(b),
In ΔABC,
∠A=2(∠B+∠C)
=2∠B+2∠C
Adding 2∠A to both sides,
∠A+2∠A=2∠A+2∠B+2∠C
⇒ 3∠A=2(∠A+∠B+∠C)
⇒ 3∠A=2×180∘
(∵ ∠A+∠B+C=180∘)
⇒ 3∠A=360∘⇒ ∠A=360∘3=120∘
∴ ∠A=120∘