r=(s−a)tanA2=(s−a)√1−cosA1+cosA
=b2 ⎷1−b2a1+b2a
=b2√2a−b2a+b=b2√(2a−b)2(2a)2−(b)2
=ab−(b)/22√a2−(b2)/4
If a = 2, b = − 2, find the value of:
(i) a2 + b2 (ii) a2 + ab + b2 (iii) a2 − b2