The correct option is A 9
Let y=∑(sin2A+sinA+1sinA)=∑[1+(sinA+1sinA)]
⇒y=[1+(sinA+1sinA)]+[1+(sinB+1sinB)]+[1+(sinC+1sinC)]
Now since A,B,C are angles of a triangle 0<A,B,C<π
⇒sinA,sinB,sinC>0
Thus using A.M.≥G.M.
(sinA+1sinA)>2,(sinB+1sinB)>2,(sinC+1sinC)>2
Hence y>(1+2)+(1+2)+(1+2)=9