In any ΔABC, if a2,b2,c2 are in A.P., prove that cot A, cot B and cot C are also in A.P.
a2, b2, c2 are in A.P.⇒ −2a2, −2b2, −2c2 are in A.P.⇒ (a2+b2+c2)−2a2, (a2+b2+c2)−2b2, (a2+b2+c2)−2c2 are in A.P.⇒ (b2+c2−a2),(c2+a2−b2),(b2+a2−c2) are in A.P.⇒ (b2+c2−a2)2abc,(c2+a2−b2)2abc,(b2+a2−c2)2abc are in A.P.⇒ 1a(b2+c2−a2)2abc, 1b(c2+a2−b2)2abc,1c(b2+a2−c2)2abc are in A.P.⇒ 1acos A, 1b cos B, 1C cos C are in A.P.⇒ ka cos A, kb cos B, kc cos C are in A.P.⇒ cos Asin A,cos Bsin B,cos Csin C are in A.P.⇒ cot A, cot B, cot C are in A.P.