wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In any ΔABC, prove that

a3sin(BC)+b3 sin(CA)+c3sin(AB)=0.

Open in App
Solution

By the sine rule, we have

asin A=bsin B=csin C=k(say)

a=k sin A,b=k sin B and c=k sin C.

a3sin(BC)=k3sin3A.sin(BC)

= k3sin2A.sin A.sin(BC)

= k3sin2A[sin[π(B+C)]sin(BC)][A+(B+c)=π]

= k3sin2A[sin(B+C)sin(BC)]

= k3sin2A.(sin2Bsin2C).

similarly, b3sin(CA)=k3sin2B(sin2Csin2B).

And, c3sin(AB)=k3sin2C(sin2Asin2B)

a3sin(BC)+b3sin(CA)+c3sin(AB)

= k3sin2A(sin2Bsin2C)+k3sin2B(sin2Csin2A)+k3sin2C(sin2Asin2B)

= 0.


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Expressions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon