In any ΔABC, prove that
a3sin(B−C)+b3 sin(C−A)+c3sin(A−B)=0.
By the sine rule, we have
asin A=bsin B=csin C=k(say)
⇒a=k sin A,b=k sin B and c=k sin C.
a3sin(B−C)=k3sin3A.sin(B−C)
= k3sin2A.sin A.sin(B−C)
= k3sin2A[sin[π−(B+C)]sin(B−C)][∴A+(B+c)=π]
= k3sin2A[sin(B+C)sin(B−C)]
= k3sin2A.(sin2B−sin2C).
similarly, b3sin(C−A)=k3sin2B(sin2C−sin2B).
And, c3sin(A−B)=k3sin2C(sin2A−sin2B)
∴a3sin(B−C)+b3sin(C−A)+c3sin(A−B)
= k3sin2A(sin2B−sin2C)+k3sin2B(sin2C−sin2A)+k3sin2C(sin2A−sin2B)
= 0.