In any ΔABC, prove that
a cos A+b cos B+c cos C=2a sinB sin C.
By the sine rule, we have
asin A=bsin B=csin C=k(say)
⇒a=k sin A,b=k sin B, and c=k sin C.
∴LHS=a cos A+b cos B+c cos C
= k sin A cos A+k sin B+k sin C cos C
= 12(sin 2A+sin 2B+sin 2C)
= 12k[2sin(A+B)cos(A−B)+2sin C cos c]
= ksin(A+B)cos(A−B)+sin C cos C
= ksin(π+C)cos(A−B)+sin C cos C
= k sin C[cos(A−B)+cos C]
= k sin C[cos(A−B)+cos π−(A−B)]
= k sxin C[cos (A−B)−cos (A+B)]
= K sin c×2 sin A sin A
= 2(k sin A)sin B sin C
= 2a sin B sin C=RHS.
Hence, a cos A+b cos B+c cos C=2a sin B sin C.