wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In any ΔABC, prove that

a cos A+b cos B+c cos C=2a sinB sin C.

Open in App
Solution

By the sine rule, we have

asin A=bsin B=csin C=k(say)

a=k sin A,b=k sin B, and c=k sin C.

LHS=a cos A+b cos B+c cos C

= k sin A cos A+k sin B+k sin C cos C

= 12(sin 2A+sin 2B+sin 2C)

= 12k[2sin(A+B)cos(AB)+2sin C cos c]

= ksin(A+B)cos(AB)+sin C cos C

= ksin(π+C)cos(AB)+sin C cos C

= k sin C[cos(AB)+cos C]

= k sin C[cos(AB)+cos π(AB)]

= k sxin C[cos (AB)cos (A+B)]

= K sin c×2 sin A sin A

= 2(k sin A)sin B sin C

= 2a sin B sin C=RHS.

Hence, a cos A+b cos B+c cos C=2a sin B sin C.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon