In any ΔABC, prove that
a(cos C−cos B)=2(b−c)cos2A2.
Applying cosine formulae, we have
LHS = a(cos C−cos B)
= a[(a2+b2−c2)2ab−(a2+c2−b2)2ac]=(a2c+b2c−c3−a2b−bc2+b3)2bc
= (b3−c3)+(b2c−bc2)−(a2b−a2c)2bc=(b3−c3)+bc(b−c)−a2(b−c)2bc
= (b−c)[(b2+c2+bc)+bc−a2]2bc=(b−c).{(b2+c2−a2)2bc+2bc2bc}
=(b+c){(b2+c2−a2)2bc+1}=(b−c)(1+cos A)
= 2(b−C)cos2A2=RHS.
∴a(cos C−cos B)=2(b−c)cos2A2.