In any ΔABC, prove that
(b2−c2) cot A+(c2−a2) cot B+(A2−B2) cot C=0
By the sine rule, we have
asin A=bsin B=csin C
⇒sin Aa=sin Bb=sin Cc=k(say)
⇒sin a=ka,sin b=kb and sin C=kc.
∴(b2−c2)cot A=(b2−c2).cos Asin A=(b2−c2)ka.(b2+c2−a2)2bc
= 1(2babc).(b2−c3)(b2+c2−a2)=b4c4−a2b2+a2c22kabc
Similiary, (c2−a2)cot B=(c4a4−b2c2+a2b2)2kabc.
And, (a2−b2)cot C=(a4−b4−a2c2+b2c2)2kabc.
∴LHS=(b2−c2)cot A+(c2−a2)cot B+(a2−b2)cot C
= 12kabc.[(b4−c4−a2b2+a2c2)+(c4−a2−b2c2+a2b2)+(a4−b4−a2c2+b2c2)]
=12kabc×0=0=RHS
Hence, (b2−c2)cotA+(c2−a2)cot B+(a2−b2)cot C=0