wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In any ΔABC, prove that :- bsinBcsinC=asin(BC)

Open in App
Solution

To prove
bsinBcsinC=asin(BC)
Let
sinAa=sinBb=sinCc=12R
Now a= 2R sin A, b=2R son b & c= 2R sin C.
bsinBcsinCasin(Bc)
=2R[sin2Bsin2Csin(B+C)sin(BC)] [sinA=sin(180A)=sin(B+C)]
R[2sin2B2sin2Ccos2C+cos2B][2sinxsiny=cos(xy)cos(x+y)]
R[2sin2B2sin2C+1+2sin2C+12sin2B]
R×0=0
so, b sin B - C sin c- a sin (B-C)=0
b sin B- c sin C = a sin (B-c)

1194526_1373672_ans_ffd2be93f2234363a88ed685d76a3809.JPG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Intersecting Lines and Associated Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon