In any Δ ABC, prove that
(b2−c2)a2 sin 2A+(c2−a2)b2 sin 2B+(a2−b2)c2 sin 2C=0
By the sine rule, we have
asin A+bsin B+csin C=k(say)
⇒a=k sin A,b=k sin B, and c=k sin C.
Applying sine rule, asnd cosine formula, we get
(b2−c2)a2 sin 2A=(b2−c2)a2.(2sin A cos a)
= (b2−c2)a2(2ak).(b2+c2−a2)2bc
[∴sinA=ak and cosA=(b2+c2−a2)2bc]
= 1(kabc).(b2−c2)(b2+c2−a2).....(i)
similarly, (c2−a2)b2 sin 2B=1(kabc).(c2−a2)(c2+a2−b2)......(ii)
And, (a2−b2)c2 sin 2C=1(kabc).(a2−b2)(a2+b2−c2).
From (i), (ii) and (iii), we get
LHS = b2−c2a2 sin 2A+(c2−a2)b2 sin 2B+(a2−b2)c2 sin 2C
= 1(kabc).[(b2−c2)(b2+c2−a2)+(c2−a2)(c2+a2−b2)+(a2−b2)(a2+b2−c2)]
= 1(kabc)×0=0=RHS
Hence, (b2−c2)a2 sin 2A+(c2−a2)b2 sin 2B+(a2−b2)c2 sin 2C=0