wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In any Δ ABC, prove that

(b2c2)a2 sin 2A+(c2a2)b2 sin 2B+(a2b2)c2 sin 2C=0

Open in App
Solution

By the sine rule, we have

asin A+bsin B+csin C=k(say)

a=k sin A,b=k sin B, and c=k sin C.

Applying sine rule, asnd cosine formula, we get

(b2c2)a2 sin 2A=(b2c2)a2.(2sin A cos a)

= (b2c2)a2(2ak).(b2+c2a2)2bc

[sinA=ak and cosA=(b2+c2a2)2bc]

= 1(kabc).(b2c2)(b2+c2a2).....(i)

similarly, (c2a2)b2 sin 2B=1(kabc).(c2a2)(c2+a2b2)......(ii)

And, (a2b2)c2 sin 2C=1(kabc).(a2b2)(a2+b2c2).

From (i), (ii) and (iii), we get

LHS = b2c2a2 sin 2A+(c2a2)b2 sin 2B+(a2b2)c2 sin 2C

= 1(kabc).[(b2c2)(b2+c2a2)+(c2a2)(c2+a2b2)+(a2b2)(a2+b2c2)]

= 1(kabc)×0=0=RHS

Hence, (b2c2)a2 sin 2A+(c2a2)b2 sin 2B+(a2b2)c2 sin 2C=0


flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon