In any ΔABC, prove that
(B−C)(B+C)=tan 12(B−C)tan 12(B+C)
By the sine rule, we have
asin A=bsin B=csin C=k(say)
⇒a=k sin A,b=k sin B and c−k sin C
∴LHS=(b−c)b+c=k sin B−k sin Ck sin B+k sin C=k(sin B−sin C)k(sin B+sin C)
= (sin B−sin C)(sin B+sin C)=2cos(B+C)2 sin (B−C)22sinB+C2 cos (B−C)2
= tan 12(B−C)tan 12(B+C)=RHS.
Hence, (b−c)b+c=tan 12(B−C)tan 12(B+C).