wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In any ΔABC, prove that

(bc)b+c=tan12(BC)tan12(B+C)

Open in App
Solution

By the sine rule, we have

asin A=bsin B=csin C=k(say)

a=k sin A, b=k sin B, c=k sin C,

LHS=(bc)b+c=k sin bK sin Ck sin B+k sin C=k(sin Bsin C)k(sin B+sin C)

= (sin Bsin C)sin B+sin C=2 cosB+C2sin(BC)22sin(B+C)2cos(BC)2

tan12(BC)tan12(B+C)=RHS

Hence, (bc)b+c=tan12(BC)1

= 1(kabc)×0=0=RHS

Hence, (b2c2)a2 sin 2A+(c2a2)b2 sin 2B+(a2b2)c2 sin 2C


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Graphs of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon