In any ΔABC, prove that
(b−c)b+c=tan12(B−C)tan12(B+C)
By the sine rule, we have
asin A=bsin B=csin C=k(say)
⇒a=k sin A, b=k sin B, c=k sin C,
∴LHS=(b−c)b+c=k sin b−K sin Ck sin B+k sin C=k(sin B−sin C)k(sin B+sin C)
= (sin B−sin C)sin B+sin C=2 cosB+C2sin(B−C)22sin(B+C)2cos(B−C)2
tan12(B−C)tan12(B+C)=RHS
Hence, (b−c)b+c=tan12(B−C)1
= 1(kabc)×0=0=RHS
Hence, (b2−c2)a2 sin 2A+(c2−a2)b2 sin 2B+(a2−b2)c2 sin 2C