In any Δ ABC, prove that
sin(B−C)sin(B+C)=(b2−c2)a2
By the sine rule, we have
asin A+bsin B+csin C=k(say)
⇒a=k sin A,b=k sin B,c=k sin C.
∴RHS=(b2−c2)a2=k2sin2B−k2sin2Csin2(B+C)
= (sin2B−sin2C)sin2A=sin(B+C).sin(B−C)sin2(B+C)
[∵(A+B+C)=π⇒A=π−(B+C)∴sinA=sin|π−(B+C)|=sin(B−C)]
= sin(B−C)sin(B+C)=LHS
∴ RHS = LHS
Hence, sin(B−C)sin(B+C)=sin(A−B)2