In any ΔABC, prove that :a (cos B+cosC−1)+b (cosC+cosA−1)+c (cosA+cosB−1)=0
In anyΔABC, we havea=b cos C+c cos Bb=c cos A+a cos Cc=a cos B+b cos ATherefore,LHS=a(cos B+cos C−1)+b (cos C+cos A−1)+c (cos A+cos B−1)=a cos B+a cos C−a+b cos C+b cosA−b+c cos A+c cos B−c=c−b cos A+a cos C−a+a−c cosB+b cos A−b+b−a cos C+c cos B−c=0=RHSHence proved.