wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In any ABC, if a2,b2,c2 are in A.P., then prove that cotA,cotB,cotC are in A.P.

Open in App
Solution

Given:a2,b2,c2 are in A.P

b2a2=c2b2

k2sin2Bk2sin2A=k2sin2Ck2sin2B using sine rule a=ksinA,b=ksinB and c=ksinC

sin(B+A)sin(BA)=sin(C+B)sin(CB)

sin(πC)sin(BA)=sin(πA)sin(CB) since A+B+C=π

sinCsin(BA)=sinAsin(CB)

sin(BA)sinA=sin(CB)sinC

sin(BA)sinAsinB=sin(CB)sinBsinC

sinBcosAcosBsinAsinAsinB=sinCcosBcosBsinCsinBsinC

cotAcotB=cotBcotC

cotA,cotB,cotC are in A.P

hence Proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon