cosA+cosB+cosC=1+4sinA2sinB2sinC2>1 ..(1)
as neither of sinA2,sinB2,sinC2 is −ive or zero.
Again cosA+cosB+cosC
=2cosA+B2cosA−B2+1−2sin2C2≤2sinC2⋅1+1−2sin2C2
∵0≤cosA−B2≤1
=−2[s2−s−12], where s=sinC2
=−2[(s−12)2−12−14]
=32−(s−12)2≤32
∴cosA+cosB+cosC≤3/2 .(2)
In other words, ∑cosA≯3/2