wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In any triangle ABC prove that identities.
sinA2sinB2sinC218.

Open in App
Solution

sinA2sinB2sinC218
C=π(A+B)
sinA2sinB2sin(π(A+B)2)
=sinA2sinB2cos(A+B2)
f(A,B)=sinA2sinB2cos(A+B2)
δFδA=12sinB2cos(A+B2)
δFδB=12sinA2cos(B+A2)
for maxima of F.
δFδA=δFδB=σ
A+B2=B+A2=π2
A=B=π/3
C=π2π3=π/3
so max value =sin3π/3=18

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon