Given: ABC is a triangle,
[∴A+B+C=π]
According to sine rule,
asinA=bsinB=csinC=k
We have to prove:
a2sin(B−C)=(b2−c2)sinA
R.H.S=(b2−c2)sinA
=k2sinA(sin2B−sin2C)
=k2sinA[sin(B+C)sin(B−C)]
[∵sin2A−sin2B=sin(A+B)sin(A−B)]
=k2sinA[sin(π−A)sin(B−C)]
[∵A+B+C=π]
=k2sinA[sin(A)sin(B−C)]
=k2sin2Asin(B−C)
=a2sin(B−C)
[∵a=ksinA]
= L.H.S
Hence, proved.