wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In any triangle ABC, prove the following:

asinA2sin(BC2)+bsinB2sin(CA2)+csinC2sin(AB2)=0

Open in App
Solution

Given: ABC is a triangle,

[A+B+C=π]

According to sine rule

asinA=bsinB=csinC=k ...(i)

We have to prove:

asinA2sin(BC2)+bsinB2sin(CA2)+csinC2sin(AB2)=0

L.H.S=asinA2sin(BC2)+bsinB2sin(CA2)+csinC2sin(AB2)

Putting the values from equation (i) in L.H.S

=k[sinAsinA2sin(BC2)+sinBsinB2sin(CA2)+sinCsinC2sin(AB2)]

=k[sin{π(B+C)}sinA2sin(BC2)+sin{π(C+A)}sinB2sin(CA2)+sin{π(A+B)}sinC2sin(AB2)]

=k[sin(B+C)sinA2sin(BC2)+sin(A+C)sinB2sin(CA2)+sin(A+B)sinC2sin(AB2)]

=k[2sin(B+C2)cos(B+C2)sinA2sin(BC2)+2sin(A+C2)cos(A+C2)sinB2sin(CA2)+2sin(A+B2)cos(A+B2)sinC2sin(AB2)]

[sinθ=2sinθ2cosθ2]

=2k[sin(B+C2)sinA2sinA2sin(BC2)+sin(A+C2)sinB2sinB2sin(CA2)+sin(A+B2)sinC2sinC2sin(AB2)]

[A+B+C=π]

=2k[sin2A2(sin2B2sin2C2)+sin2B2(sin2C2sin2A2)+sin2C2(sin2A2sin2B2)]

[sin(A+B)sin(AB)=sin2Asin2B]

=2k(sin2A2sin2B2sin2A2sin2C2+sin2B2sin2C2sin2A2sin2B2+sin2A2sin2C2sin2C2sin2B2)

=2k(0)

= 0

= R.H.S

Hence, proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon