Given: ABC is a triangle,
[∴A+B+C=π]
According to sine rule
asinA=bsinB=csinC=k ...(i)
We have to prove:
asinA2sin(B−C2)+bsinB2sin(C−A2)+csinC2sin(A−B2)=0
L.H.S=asinA2sin(B−C2)+bsinB2sin(C−A2)+csinC2sin(A−B2)
Putting the values from equation (i) in L.H.S
=k[sinAsinA2sin(B−C2)+sinBsinB2sin(C−A2)+sinCsinC2sin(A−B2)]
=k[sin{π−(B+C)}sinA2sin(B−C2)+sin{π−(C+A)}sinB2sin(C−A2)+sin{π−(A+B)}sinC2sin(A−B2)]
=k[sin(B+C)sinA2sin(B−C2)+sin(A+C)sinB2sin(C−A2)+sin(A+B)sinC2sin(A−B2)]
=k[2sin(B+C2)cos(B+C2)sinA2sin(B−C2)+2sin(A+C2)cos(A+C2)sinB2sin(C−A2)+2sin(A+B2)cos(A+B2)sinC2sin(A−B2)]
[∵sinθ=2sinθ2cosθ2]
=2k[sin(B+C2)sinA2sinA2sin(B−C2)+sin(A+C2)sinB2sinB2sin(C−A2)+sin(A+B2)sinC2sinC2sin(A−B2)]
[∵A+B+C=π]
=2k[sin2A2(sin2B2−sin2C2)+sin2B2(sin2C2−sin2A2)+sin2C2(sin2A2−sin2B2)]
[∵sin(A+B)sin(A−B)=sin2A−sin2B]
=2k(sin2A2sin2B2−sin2A2sin2C2+sin2B2sin2C2−sin2A2sin2B2+sin2A2sin2C2−sin2C2sin2B2)
=2k(0)
= 0
= R.H.S
Hence, proved.