Given: ABC is a triangle, [∴A+B+C=π]
According to sine rule
asinA=bsinB=csinC=k ...(i)
We have to prove:
bcosB+ccosC=acos(B−C)
L.H.S=bcosB+ccosC
Putting the values from equation (i)
L.H.S=k(sinBcosB+sinCcosC)
=k2(2sinBcosB+2sinCcosC)
=k2(sin2B+sin2C) ...(ii)
Now,R.H.S=acos(B−C)
=ksinAcos(B−C)
=k2[2sinAcos(B−C)]
Using the transformation formula
[∵2sinAcosB=sin(A+B)+sin(A−B)]
R.H.S=k2[sin(A+B−C)+sin(A−B+C)]
=k2[sin(π−C−C)+sin(π−B−B)]
[∵A+B+C=π]
R.H.S=k2(sin2C+sin2B)
=k2(sin2B+sin2C)
=L.H.S (from (ii))
Hence, proved.