Given: ABC is a triangle,
[∴A+B+C=π]
According to sine rule,
asinA=bsinB=csinC=k
We have to prove: bsinB−csinC=asin(B−C).
L.H.S=bsinB−csinC
=ksinBsinB−ksinCsinC
=k(sin2B−sin2C)
=k[sin(B+C)sin(B−C)]
[∵sin2A−sin2B=sin(A+B)sin(A−B)]
=k[sin(π−A)sin(B−C)] [∵A+B+C=π]
=ksinA sin(B−C)
=asin(B−C) [∵a=ksinA]
= R.H.S
Hence, proved.