1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Conditional Identities
In any triang...
Question
In any triangle ABC,
sin
3
A
cos
(
B
−
C
)
+
sin
3
B
cos
(
C
−
A
)
+
sin
3
C
cos
(
A
−
B
)
=
m
sin
A
sin
B
sin
C
. Find
m
Open in App
Solution
Given:
A
+
B
+
C
=
π
∴
A
=
π
−
(
B
+
C
)
LHS=
sin
3
A
cos
(
B
−
C
)
+
sin
3
B
cos
(
C
−
A
)
+
sin
3
C
cos
(
A
−
B
)
=
sin
2
A
sin
(
B
+
C
)
cos
(
B
−
C
)
+
sin
2
B
sin
(
C
+
A
)
cos
(
C
−
A
)
+
sin
2
C
sin
(
A
+
B
)
cos
(
A
−
B
)
=
1
2
sin
2
A
(
sin
2
B
+
sin
2
C
)
+
1
2
sin
2
B
(
sin
2
C
+
sin
2
A
)
+
1
2
sin
2
C
(
sin
2
A
+
sin
2
B
)
=
sin
2
A
(
sin
B
cos
B
+
sin
C
cos
C
)
+
sin
2
B
(
sin
C
cos
C
+
sin
A
cos
A
)
+
sin
2
C
(
sin
A
cos
A
+
sin
B
cos
B
)
=
sin
A
sin
B
(
sin
A
cos
B
+
sin
A
cos
B
)
+
sin
B
sin
C
(
sin
B
cos
C
+
sin
B
cos
C
)
+
sin
C
sin
A
(
sin
C
cos
A
+
sin
C
cos
A
)
=
sin
A
sin
B
sin
(
A
+
B
)
+
sin
B
sin
C
sin
(
B
+
C
)
+
sin
C
sin
A
sin
(
C
+
A
)
=
3
sin
A
sin
B
sin
C
=
RHS
Ans: 3
Suggest Corrections
0
Similar questions
Q.
In a triangle ABC, prove that
sin
3
A
cos
(
B
−
C
)
+
sin
3
B
cos
(
C
−
A
)
+
s
i
n
3
C
cos
(
A
−
B
)
=
3
sin
A
sin
B
sin
C
.
Q.
In a
Δ
A
B
C
, prove that
sin
3
A
cos
(
B
−
C
)
+
sin
3
B
cos
(
C
−
A
)
+
sin
3
C
cos
(
A
−
B
)
=
3
sin
A
sin
B
sin
C
Q.
If
A
+
B
+
C
=
π
then
sin
3
A
cos
(
B
−
C
)
+
sin
3
B
cos
(
C
−
A
)
+
sin
3
C
cos
(
A
−
B
)
=
3
sin
A
sin
B
sin
C
Q.
If
A
+
B
+
C
=
π
, then prove that
sin
3
A
cos
(
B
−
C
)
+
sin
3
B
cos
(
C
−
A
)
+
sin
3
C
cos
(
A
−
B
)
=
3
sin
A
sin
B
sin
C
Q.
If
A
+
B
+
X
=
π
then prove that
sin
3
A
cos
(
B
−
C
)
+
sin
3
B
cos
(
C
−
A
)
+
sin
3
C
cos
(
A
−
B
)
=
3
sin
A
sin
B
sin
C
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Conditional Identities
MATHEMATICS
Watch in App
Explore more
Conditional Identities
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app