wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In any triangle ABC,
sin3Acos(BC)+sin3Bcos(CA)+sin3Ccos(AB)=msinAsinBsinC. Find m

Open in App
Solution

Given:
A+B+C=π

A=π(B+C)

LHS=sin3Acos(BC)+sin3Bcos(CA)+sin3Ccos(AB)

=sin2Asin(B+C)cos(BC)+sin2Bsin(C+A)cos(CA)+sin2Csin(A+B)cos(AB)

=12sin2A(sin2B+sin2C)+12sin2B(sin2C+sin2A)+12sin2C(sin2A+sin2B)

=sin2A(sinBcosB+sinCcosC)+sin2B(sinCcosC+sinAcosA)+sin2C(sinAcosA+sinBcosB)

=sinAsinB(sinAcosB+sinAcosB)+sinBsinC(sinBcosC+sinBcosC)+
sinCsinA(sinCcosA+sinCcosA)

=sinAsinBsin(A+B)+sinBsinCsin(B+C)+sinCsinAsin(C+A)

=3sinAsinBsinC= RHS
Ans: 3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Conditional Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon