In any ∆ABC, tanA2-tanB2tanA2+tanB2 is equal to:
a-ba+b
a-bc
ca-b
None of these.
Explanation for the correct option.
Step 1: Simplify tanA2-tanB2tanA2+tanB2.
tanA2-tanB2tanA2+tanB2=sinA/2cosA/2-sinB/2cosB/2sinA/2cosA/2+sinB/2cosB/2=sinA2·cosB2-sinB2·cosB2sinA2·cosB2+sinB2·cosB2=sinA-B2sinA+B2[∵sin(x-y)=sinxcosy-sinycosxandsinx+y=sinxcosy+sinycosxand]
By angle sum property of a triangle,
A+B+C=180°⇒A+B2=90°-C2
So,
sinA-B2sin90°-C2=sinA-B2cosC2[Bysin(90°-θ)=cosθ]...(1)
Multiplying the numerator and denominator of 1 by 2sinC2, we get
2sinC2sinA-B22sinC2cosC2=2sin90°-A+B2sinA-B2sin2C2[∵sin2θ=2sinθcosθ]=2cosA+B2sinA-B2sinC[∵sin90°-θ=cosθ]=sinA-sinBsinC...2[∵sinx-siny=2cosx+y2sinx-y2]
We know that asinA=bsinB=csinC=k, so 2 will be
=ak-bkck=a-bc
Hence, option B is correct.