In any ∆ABC, the simplified form of cos2Aa2-cos2Bb2 is:
a2-b2
1a2-b2
1a2-1b2
a2+b2
Explanation for the correct option:
Finding the value of the expression:
cos2Aa2-cos2Bb2=1-2sin2Aa2-1-2sin2Bb2bycos2θ=1-2sin2θ=1a2-2sin2Aa2-1b2+2sin2Bb2=1a2-1b2+2sin2Bb2-sin2Aa2=1a2-1b2+20bysinerulesinAa=sinBb=sinCc=1a2-1b2
Hence, option C is correct.
Question 56 (d)
Simplify the following by combining the like terms and then write whether the expression is a monomial, a binomial or a trinomial.
2a + 2b + 2c - 2a - 2b - 2c - 2b + 2c + 2a