Here we want +1 and so we write
cosA=1−2sin2(A/2)
L.H.S. =1−2sin2(A/2)+2cos{(B+C)/2}cos{(B−C)/2}
=1−2sin2(A/2)+2sin(A/2)cos{(B−C)/2}
=1−2sin(A/2)[sin(A/2)−cos{(B−C)/2}]
=1−2sin(A/2)[cos{(B+C)/2}−cos{(B−C)/2}]
=1−2sin(A/2)[2sin(B/2)sin(−C/2)]
=1+4sin(A/2)sin(B/2)sin(C/2)
∴sin(−θ)=−sinθ.