In circular motion, suppose →a is the acceleration of particle, →v its linear velocity and →ω its angular velocity. Column-IColumn-II(a)|→a×→v|(p) positive(b)→a.→v(q) Negative(c)→ω.→v(r) zero(d)|→ω×→a|(s) Undefined
A
a−p;b−p,q;c−r;d−p
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a−p;b−p,q,r;c−r;d−p
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
a−p,q;b−p,q;c−r;d−p
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
a−p;b−p,q;c−q,r;d−p
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ba−p;b−p,q,r;c−r;d−p (a)→(p);(b)→(p),(q),(r) (c)→(r);(d)→(p) In circular motion (a) Here →a is net acceleration |→a×→v|=avsinθ also 0≤θ≤π,sinθ→+ve so |→a×→v|=+ve (b) →a.→v=avcosθ For 0<θ<π/2⇒cosθ→+ve and for θ=π/2⇒cosθ=0 ∴π/2<θ<π⇒cosθ=−ve →a.→v→ may be +ve , 0 and -ve (c) →ω⊥→v i.e., →ω.→v=0 (d) ∵→ω⊥→a ⇒|→ω×→a|=ωasin90∘=ωa→+ve