wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ΔABC, ∠ACB is obtuse angle, seg AD ⊥ seg BC. Prove that:
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}--> AB2 = <!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}--> BC2 + <!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}--> AC2 + 2BC × CD

[3 Marks]

Open in App
Solution


In the figure, seg AD ⊥ seg BC
Let AD = p, AC = b, AB = c,
BC = a
and DC = x.
DB = a + x [1 Mark]

In <!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}--> Δ ADB, by Pythagoras theorem,
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}--> c2 = (a+x)2 + p2
c2 = a2 + 2ax + x2 + p2 .......... (I)
Similarly, in <!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}--> Δ ADC
b2= x2 + p2
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}--> ∴ p2 = b2 - x2.......... (II) [1 Mark]

<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}--> ∴ substituting the value of p2 from (II) in (I)
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}--> ∴ c2 = a2 + 2ax + b2
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}--> ∴ <!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}--> AB2 = <!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}--> BC2 + AC2 + 2BC × CD. [1 Mark]

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fringe Width
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon