In ΔABC, a≤b≤c, if a3+b3+c3sin3A+sin3B+sin3C=8, then the maximum value of a is
2
By sine rule,
asinA=bsinB=csinC=K
⇒a=KsinA, b=KsinB and c=KsinC
Putting the values of a, b and c in the given equation, we get,
K3sin3A+K3sin3B+K3sin3Csin3A+sin3B+sin3C=8
⇒K3=8
⇒K=2
⇒a=KsinA=2sinA≤2