In Δ ABC, AB=10 cm, ∠ A=40∘, ∠ B=110∘. The area of the triangle will be equal to ______. [Tan 40∘=0.84, Tan 70∘=2.75]
60.47 cm2
Draw CD perpendicular to AB extended to D.
Let BD=x & CD=h
∠ CBD=(180−110∘)=70∘
In Triangle CBD
Tan 70∘=CDBD=hx
h=x Tan 70∘
h=2.75x ...(i)
In triangle ACD
Tan 40∘=CDAD=h(10+x)
h=(10+x) Tan 40∘
h=(10+x).0.84
h=8.4+0.84 x ...(ii)
From (i) & (ii) we have
2.75 x=8.4+0.84 x
1.91 x=8.4
x=4.39 cm
h=2.75 x From (i)
h=2.75×4.39
h=12.09 cm
Area of triangle =12×AB×h
=12×10×12.09
=60.47 cm2