In Δ ABC, AB=10 cm, ∠A=40∘, ∠B=80∘. The area of triangle ABC will be equal to
[tan 40∘=0.83tan 80∘=5.6]
36.14 cm2
In Δ ABC Draw CD perpendicular to AB
Let CD = h, AD = x , so DB becomes 10- x
In triangle CDB
tan 80∘=CDDB=h(10−x)
h=(10−x). tan 80∘
h=(10−x).(5.6)
h=56−5.6x ...(i)
In Δ CAD
tan 40∘=CDAD=hx
h=x tan 40∘
h=0.83 x ...(ii)
From (i) & (ii) we have
56−5.6x=0.83x
56=6.43x
x=8.7 cm
From (ii) h=0.83×8.7
h=7.22 cm
Area of triangle ABC
=12×AB×CD
=12×10×7.22=36.14 cm2